首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   38篇
  国内免费   3篇
化学   276篇
力学   4篇
数学   40篇
物理学   45篇
  2023年   10篇
  2022年   5篇
  2021年   11篇
  2020年   18篇
  2019年   24篇
  2018年   8篇
  2017年   6篇
  2016年   23篇
  2015年   18篇
  2014年   11篇
  2013年   21篇
  2012年   29篇
  2011年   25篇
  2010年   16篇
  2009年   8篇
  2008年   17篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1984年   2篇
  1977年   2篇
  1926年   1篇
  1909年   2篇
  1908年   1篇
  1900年   3篇
  1898年   1篇
  1893年   3篇
  1892年   4篇
  1891年   4篇
  1890年   4篇
  1889年   3篇
  1888年   6篇
  1887年   2篇
  1886年   1篇
  1885年   1篇
  1884年   8篇
  1883年   2篇
  1882年   1篇
  1881年   4篇
  1880年   3篇
  1879年   1篇
  1874年   1篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
1.
New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5‐cyanotetrazolide anion [C2N5]? are reported. Depending on the nature of cation–anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm?1 at 20 °C for the IL 1‐butyl‐1‐methylpyrrolidinium 5‐cyanotetrazolide [BMPyr][C2N5]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium‐ion batteries.  相似文献   
2.
The current laboratory practices of organic synthesis are labor intensive, impose safety and environmental hazards, and hamper the implementation of artificial intelligence guided drug discovery. Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions with prepacked capsules. The machine conducts coupling reactions and delivers the purified products with minimal user involvement. Two desirable reaction classes – the synthesis of saturated N-heterocycles and reductive amination – were implemented, along with multi-step sequences that provide drug-like organic molecules in a fully automated manner. We envision that this system will serve as a console for developers to provide synthetic methods as integrated, user-friendly packages for conducting organic synthesis in a safe and convenient fashion.

Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions using prepacked capsules with minimal user involvement.  相似文献   
3.
We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.

We report on a study that combines advanced fluorescence methods with molecular dynamics simulations to cover timescales from nanoseconds to milliseconds for a large protein, the chaperone Hsp90.  相似文献   
4.
The chemical labeling of biomolecules continues to be an important tool for the study of their function and cellular fate. Attention is increasingly focused on labeling of biomolecules in living cells, since cell lysis introduces many artefacts. In addition, with the advances in biocompatible synthetic organic chemistry, a whole new field of opportunity has opened up, affording high diversity in the nature of the label as well as a choice of ligation reactions. In recent years, several different two-step labeling strategies have emerged. These rely on the introduction of a bioorthogonal attachment site into a biomolecule, then ligation of a reporter molecule to this site using bioorthogonal organic chemistry. This Perspective focuses on these techniques, their implications and future directions.  相似文献   
5.
Kriikku P  Grass B  Hokkanen A  Stuns I  Sirén H 《Electrophoresis》2004,25(10-11):1687-1694
Analysis of the beta-blockers oxprenolol, atenolol, timolol, propranolol, metoprolol, and acebutolol in human urine by a combination of isotachophoresis (ITP) and zone electrophoresis (ZE) was investigated. Methods were developed with a conventional capillary electrophoresis (CE) apparatus and a poly(methyl methacrylate) (PMMA) microchip system. With CE the separation of oxprenolol, atenolol, timolol, and acebutolol from a standard solution containing 5 microg/mL of each compound was accomplished by performing ZE with transient ITP. The electrolyte system consisted of 10 mM sodium morpholinoethane sulfonate (pH 5.5) and 0.1% methylhydroxyethylcellulose as the leading electrolyte and 30 mM ortho-phosphoric acid (pH 2.0) as both the terminating and the ZE background electrolyte. With the microchip system the separation of oxprenolol and acebutolol from a standard solution containing 10 microg/mL of each compound was accomplished by a coupled-channel ITP-ZE device using the same leading electrolyte solution as the CE system but 5 mM glutamic acid (pH 3.4) as terminating and background electrolytes. The systems were used for analyses of patient urine samples. Water-soluble hydrophilic matrix compounds were removed from the urine samples by solid-phase extraction (SPE). Limits of quantification below 5 microg/mL could be achieved. The PMMA ITP-ZE chip has not earlier been used for analyses of any drugs from urine samples.  相似文献   
6.
7.
8.
9.
A modified synthetic pathway towards perylene-perylene dimers and a facile purification method to obtain the regioisomerically pure syn- and anti-isomers are reported. In addition, a novel perylene-naphthalene heterodimer with 30 conjugated π-electron pairs was designed and synthesized on the basis of a previously described precursor and the resulting regioisomers were separated from each other. Thereby, the opto-electronic properties of the linearly elongated chromophores could be investigated regarding the differences in length of their aromatic system and the configuration of the isomers. Further tuning of their energy gaps was realized via protonation and methylation of the dibenzimidazole-bridging unit. Extraordinary red-shifts of the absorption maxima of 62 nm for the methylated and 92 nm for the protonated perylene-perylene anti-isomer could be achieved. Moreover, the maxima for the syn-isomer could be shifted bathochromically by 87 and 113 nm, respectively.  相似文献   
10.
The kinetic resolution of N‐heterocycles with chiral acylating agents reveals a previously unrecognized stereoelectronic effect in amine acylation. Combined with a new achiral hydroxamate, this effect makes possible the resolution of various N‐heterocycles by using easily prepared reagents. A transition‐state model to rationalize the stereochemical outcome of this kinetic resolution is also proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号